Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 73(2): 44-48, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236779

RESUMO

Since May 2022, approximately 2,500 mpox cases have been reported in Los Angeles County (LAC), California. Beginning in May 2023, the LAC Department of Public Health observed a consistent increase in mpox cases after a prolonged period of low incidence. A total of 56 cases were identified during May 4-August 17, 2023. A minority of mpox patients were fully vaccinated (29%). One patient was hospitalized; no deaths were reported. Two cases of reinfection occurred, both of which were associated with mild illness. The increasing number of cases during this period was significant, as few other health departments in the United States reported an increase in mpox cases during the same period. The outbreak spread similarly to the 2022 U.S. mpox outbreak, mainly through sexual contact among gay, bisexual, and other men who have sex with men. Vaccination against mpox became available in June 2022 and has been shown to be effective at preventing mpox disease. This outbreak was substantially smaller than the 2022 mpox outbreak in LAC (2,280 cases); possible explanations for the lower case count include increased immunity provided from vaccination against mpox and population immunity from previous infections. Nonetheless, mpox continues to spread within LAC, and preventive measures, such as receipt of JYNNEOS vaccination, are recommended for persons at risk of Monkeypox virus exposure.


Assuntos
Varíola dos Macacos , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Los Angeles/epidemiologia , Surtos de Doenças
2.
J Infect Dis ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995310

RESUMO

The Los Angeles County Department of Public Health established a surveillance system to identify complicated (advanced HIV or hospitalized) mpox cases. From August 1st to November 30th, 2022, we identified 1,581 mpox cases of which 134 were complicated (8.5%). A subset of eight cases did not recover after either initiating or completing a course of oral tecovirimat. All eight patients were HIV positive and had advanced HIV (CD4 <200 cells/mm3). We identified eight distinct mutations previously associated with tecovirimat resistance in specimens collected from six patients. Ongoing surveillance of viral evolution requires close coordination between health departments and front-line providers.

4.
Microorganisms ; 11(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630656

RESUMO

Remdesivir is the first FDA-approved drug for treating severe SARS-CoV-2 infection and targets RNA-dependent RNA polymerase (RdRp) that is required for viral replication. To monitor for the development of mutations that may result in remdesivir resistance during prolonged treatment, we sequenced SARS-CoV-2 specimens collected at different treatment time points in two transplant patients with severe COVID-19. In the first patient, an allogeneic hematopoietic stem cell transplant recipient, a transient RdRp catalytic subunit mutation (nsp12:A449V) was observed that has not previously been associated with remdesivir resistance. As no in vitro study had been conducted to elucidate the phenotypic effect of nsp12:A449V, its clinical significance is unclear. In the second patient, two other transient RdRp mutations were detected: one in the catalytic subunit (nsp12:V166A) and the other in an accessory subunit important for processivity (nsp7:D67N). This is the first case report for a potential link between the nsp12:V166A mutation and remdesivir resistance in vivo, which had only been previously described by in vitro studies. The nsp7:D67N mutation has not previously been associated with remdesivir resistance, and whether it has a phenotypic effect is unknown. Our study revealed SARS-CoV-2 genetic dynamics during remdesivir treatment in transplant recipients that involved mutations in the RdRp complex (nsp7 and nsp12), which may be the result of selective pressure. These results suggest that close monitoring for potential resistance during the course of remdesivir treatment in highly vulnerable patient populations may be beneficial. Development and utilization of diagnostic RdRp genotyping tests may be a future direction for improving the management of chronic COVID-19.

6.
PLoS Biol ; 21(6): e3002151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310918

RESUMO

The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , Genômica
8.
medRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36299420

RESUMO

The 2022 multi-country monkeypox (mpox) outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and rapid pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR cycle threshold below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.

10.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088854

RESUMO

Transposable elements are powerful agents of evolution that can diversify transcriptional programs by distributing transcription factor DNA-binding sites throughout genomes. To investigate the extent that transposable elements provide transcription factor-binding motifs in Caenorhabditis elegans, we determined the genomic positions of DNA-binding motifs for 201 different transcription factors. Surprisingly, we found that almost all examined transcription factors have binding motifs that reside within transposable elements, and all types of transposable elements have at least 1 instance of a transcription factor motif, demonstrating that transposable elements provide previously unappreciated numbers of transcription factor-binding motifs to the C. elegans genome. After determining the occurrence of transcription factor motifs in transposable elements relative to the rest of the genome, we identified DNA-binding motifs for 45 different transcription factors that are greater than 20-fold enriched within transposable elements compared to what would be expected by chance. Consistent with potential functional roles for these transposable element-enriched transcription factor-binding sequences, we determined that all transcription factor motif types found in transposable elements have instances of residing within accessible chromatin sites associated with transcription factor binding. The overwhelming majority of transcription factor-binding motifs located within transposable elements associate with their cognate transcription factors, suggesting extensive binding of transcription factors to sequences within transposable elements. In addition, transposable elements with accessible or transcription factor-bound motifs reside in the putative promoter regions of approximately 12% of all protein-coding genes, providing widespread possibilities for influencing gene expression. This work represents the first comprehensive analysis of transposable element-transcription factor interactions in C. elegans and demonstrates that transposable element-provided transcription factor-binding sites are prevalent in this important model organism.


Assuntos
Caenorhabditis elegans , Elementos de DNA Transponíveis , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Elementos de DNA Transponíveis/genética , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Elife ; 82019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31825311

RESUMO

Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR.


Assuntos
Caenorhabditis/fisiologia , Caenorhabditis/efeitos da radiação , Elementos de DNA Transponíveis , Resposta ao Choque Térmico , Elementos de Resposta , Animais , Caenorhabditis/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Ligação Proteica , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 47(18): 9829-9841, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31396626

RESUMO

Elevated temperatures activate a heat shock response (HSR) to protect cells from the pathological effects of protein mis-folding, cellular mis-organization, organelle dysfunction and altered membrane fluidity. This response includes activation of the conserved transcription factor heat shock factor 1 (HSF-1), which binds heat shock elements (HSEs) in the promoters of genes induced by heat shock (HS). The upregulation of protein-coding genes (PCGs), such as heat shock proteins and cytoskeletal regulators, is critical for cellular survival during elevated temperatures. While the transcriptional response of PCGs to HS has been comprehensively analyzed in a variety of organisms, the effect of this stress on the expression of non-coding RNAs (ncRNAs) has not been systematically examined. Here we show that in Caenorhabditis elegans HS induces up- and downregulation of specific ncRNAs from multiple classes, including miRNA, piRNA, lincRNA, pseudogene and repeat elements. Moreover, some ncRNA genes appear to be direct targets of the HSR, as they contain HSF-1 bound HSEs in their promoters and their expression is regulated by this factor during HS. These results demonstrate that multiple ncRNA genes respond to HS, some as direct HSF-1 targets, providing new candidates that may contribute to organismal survival during this stress.


Assuntos
Caenorhabditis elegans/genética , Fatores de Transcrição de Choque Térmico/genética , RNA não Traduzido/genética , Transcriptoma/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição de Choque Térmico/química , Resposta ao Choque Térmico/genética , Regiões Promotoras Genéticas , Ativação Transcricional/genética
13.
Genetics ; 212(1): 125-140, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30910798

RESUMO

Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37-all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a member of the complex. We found that, in wild-type worms, synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are evenly distributed across the autosomes, not biased toward autosomal arms, as are the broad H3K9me2 domains. Both synMuv B targets and germline genes display a dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37 mutants. This difference between lin-15B and DREAM complex mutants likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high-temperature larval arrest, and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of those genes in somatic tissues.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Animais , Caenorhabditis elegans/metabolismo , Células Germinativas , Metilação
14.
PLoS Genet ; 13(11): e1007088, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091720

RESUMO

The DREAM (Dp/Retinoblastoma(Rb)-like/E2F/MuvB) transcriptional repressor complex acts as a gatekeeper of the mammalian cell cycle by establishing and maintaining cellular quiescence. How DREAM's three functional components, the E2F-DP heterodimer, the Rb-like pocket protein, and the MuvB subcomplex, form and function at target gene promoters remains unknown. The current model invokes that the pocket protein links E2F-DP and MuvB and is essential for gene repression. We tested this model by assessing how the conserved yet less redundant DREAM system in Caenorhabditis elegans is affected by absence of the sole C. elegans pocket protein LIN-35. Using a LIN-35 protein null mutant, we analyzed the assembly of E2F-DP and MuvB at promoters that are bound by DREAM and the level of expression of those "DREAM target genes" in embryos. We report that LIN-35 indeed mediates the association of E2F-DP and MuvB, a function that stabilizes DREAM subunit occupancy at target genes. In the absence of LIN-35, the occupancy of E2F-DP and MuvB at most DREAM target genes decreases dramatically and many of those genes become upregulated. The retention of E2F-DP and MuvB at some target gene promoters in lin-35 null embryos allowed us to test their contribution to DREAM target gene repression. Depletion of MuvB, but not E2F-DP, in the sensitized lin-35 null background caused further upregulation of DREAM target genes. We conclude that the pocket protein functions primarily to support MuvB-mediated repression of DREAM targets and that transcriptional repression is the innate function of the evolutionarily conserved MuvB complex. Our findings provide important insights into how mammalian DREAM assembly and disassembly may regulate gene expression and the cell cycle.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Cromatina/metabolismo , Proteínas Repressoras/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fertilidade , Complexos Multiproteicos/metabolismo , Fenótipo , Ligação Proteica , Proteínas Repressoras/genética
15.
Genes Dev ; 29(5): 495-500, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25737279

RESUMO

The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell cycle genes, but its mechanism of action is poorly understood. Here we show that Caenorhabditis elegans DREAM targets have an unusual pattern of high gene body HTZ-1/H2A.Z. In mutants of lin-35, the sole p130/Rb-like gene in C. elegans, DREAM targets have reduced gene body HTZ-1/H2A.Z and increased expression. Consistent with a repressive role for gene body H2A.Z, many DREAM targets are up-regulated in htz-1/H2A.Z mutants. Our results indicate that the DREAM complex facilitates high gene body HTZ-1/H2A.Z, which plays a role in target gene repression.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Animais , Genes cdc/genética , Mutação/genética , Ligação Proteica , Transcriptoma
16.
Genome Res ; 25(1): 76-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25467431

RESUMO

Formation of heterochromatin serves a critical role in organizing the genome and regulating gene expression. In most organisms, heterochromatin flanks centromeres and telomeres. To identify heterochromatic regions in the heavily studied model C. elegans, which possesses holocentric chromosomes with dispersed centromeres, we analyzed the genome-wide distribution of the heterochromatin protein 1 (HP1) ortholog HPL-2 and compared its distribution to other features commonly associated with heterochromatin. HPL-2 binding highly correlates with histone H3 mono- and dimethylated at lysine 9 (H3K9me1 and H3K9me2) and forms broad domains on autosomal arms. Although HPL-2, like other HP1 orthologs, binds H3K9me peptides in vitro, the distribution of HPL-2 in vivo appears relatively normal in mutant embryos that lack H3K9me, demonstrating that the chromosomal distribution of HPL-2 can be achieved in an H3K9me-independent manner. Consistent with HPL-2 serving roles independent of H3K9me, hpl-2 mutant worms display more severe defects than mutant worms lacking H3K9me. HPL-2 binding is enriched for repetitive sequences, and on chromosome arms is anticorrelated with centromeres. At the genic level, HPL-2 preferentially associates with well-expressed genes, and loss of HPL-2 results in up-regulation of some binding targets and down-regulation of others. Our work defines heterochromatin in an important model organism and uncovers both shared and distinctive properties of heterochromatin relative to other systems.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Imunoprecipitação da Cromatina , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Regulação para Baixo , Estudos de Associação Genética , Histonas/genética , Histonas/metabolismo , Meiose , Metilação , Regiões Promotoras Genéticas , Recombinação Genética/genética , Transcriptoma , Regulação para Cima
17.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164756

RESUMO

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Animais , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Replicação do DNA/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Lâmina Nuclear/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...